# created 09 Jan 2026 # Author Orchid ID: 0000-0001-7072-204X # Author: Dr. Helmut C. Schmidt # helmut.schmidt@physics-beyond-standard-model.com # Angaben gem. § 5 TMG # Betreiber und Kontakt: # Dr. Helmut Christian Schmidt # Johann-Hackl-Ring 52 # D-85630 # Grasbrunn # Germany # Tel:+49 15256325349 # helmut.schmidt@physics-beyond-standard-model.com # Sämtliche Inhalte auf dieser website (Texte, Titel, Bilder, Grafiken u. a.) unterliegen dem Schutz des Urheberrechts. # Sie dürfen außerhalb der Grenzen dieser Schutzgesetze nicht ohne die vorherige schriftliche Zustimmung vervielfältigt, # verbreitet, veröffentlicht, verändert, Dritten zugänglich gemacht oder auf andere Weise genutzt werden. # Verantwortlicher für journalistisch-redaktionelle Inhalte gem. § 55 II RstV: # Dr. Helmut Christian Schmidt import matplotlib.pyplot as plt import cmath import matplotlib.colors as mcolors pi = cmath.pi; i_T = 0; i_T1 = 0; E = 0; E = [0]*10; g = [[0] * 10] * 10 Obj=[[0]*20]*30; N_E= [0]*20000; N_T= [0]*20000; Mark= [0]*20000; E_t=[0]*20000 Emax= [0]*1000; Emin= [0]*1000; i_Emax= [0]*30; i_Emin= [0]*30; Dmax = [[0]*10]*30; Dmin = [[0]*10]*30 Obj=[["Name" ,"m_e" ,"E", "-SD", "+SD" ,"Charge","Spin","P.","name","pos"], ["e" ,"1.00(1)" ,"1.000","-0.005","0.005" ,"-1","1/2","","e",2], ["u" ,"4.18(-0.51)(0.96)" ,"4.18","-0.51","0.96" ,"+2/3","","","u",3], ["d" ,"9.14(-0.33)(0.94)" ,"9.14","-0.33","0.94" ,"-1/3","","","d",3], ["Muon" ,"206.7682827(46)" ,"206.7682827","-0.0000046","0.0000046" ,"0","1","","muon",-6], ["s" ,"182.8(-6.6)(16.8)" ,"182.8","-6.6","16.8" ,"-1/3","","","s",3], ["c" ,"2485(-39)(39)" ,"2485","-39","39" ,"+2/3","","","c",0], ["b" ,"8186(14)" ,"8186","-14","14" ,"-1/3","","","b",0], ["t" ,"337710(570)" ,"337710","-570","570" ,"+2/3","","","t",0], ["Higgs" ,"244830(210)" ,"244830","-210","210" ,"0","0","","Higgs",0], ["Pion 0" ,"264.1430(9)" ,"264.1430","-0.0009","0.0009","0","0","-","$u\overline{d}-\overline{u}d$",3], ["Pion +-","273.13243(35)" ,"273.13243","-0.00035","0.00035","+-1","0","-",\ "$u\overline{u},\overline{d}d$",8], ["Eta" ,"1072.139(35)" ,"1072.139","-0.035","0.035","0","0","-",\ "$u\overline{u}+\overline{d}d-2s\overline{s}$",1], ["Eta`" ,"1874.32(11)" ,"1874.32","-0.11","0.11" ,"0","0","-",\ "$u\overline{u}+\overline{d}d+s\overline{s}$",-22], ["Rho +-" ,"1506(1)" ,"1506","-1","1" ,"-+1","1","-","$u\overline{u},\overline{d}d$",3], ["Rho 0" ,"1517.14(49)" ,"1517.14","-0.49","0.49" ,"0","1","-","$u\overline{u}-\overline{d}d$",8], ["Omega" ,"1531.62(25)" ,"1531.62","-0.25","0.25" ,"0","1","-","$u\overline{u}+\overline{d}d$",-8], ["Phi" ,"1995.035(31)" ,"1995.035","-0.031","0.031","0","1","-","$s\overline{s}(most)$",-11], ["K +-" ,"966.102(21)" ,"966.102","-0.021","0.021" ,"+-1","0","-","$u\overline{s},s\overline{u}$",2], ["KL 0" ,"973.800(26)" ,"973.800","-0.026","0.026" ,"0","0","-","$d\overline{s},s\overline{d}$ ",7], ["KS 0" ,"973.800(26)" ,"973.800","-0.026","0.026" ,"0","","","$d\overline{s},s\overline{d}$",12], ["K* +-" ,"1745.2(1)" ,"1745.2","-0.1","0.1" ,"+-1","","","$d\overline{s},s\overline{d}$",-12], ["K* 0" ,"1752.6(1)" ,"1752.6","-0.1","0.1" ,"0","","","$d\overline{s},s\overline{d}$",-6], ["Neutron","1838.68366200(74)" ,"1838.68366200", "-0.00000074", "0.00000074","0","1/2","1","udd",-5], ["Proton" ,"1836.152673426(32)","1836.152673426","-0.000000032","0.000000032","1","1/2","1","uud",-10], ["Tau" ,"3477.23(23)" ,"3477.23","-0.23","0.23" ,"-1","1/2","","tau",0], ["H" ,"1837.47(-0.29)(0.20)","1837.47","-0.29","0.20" ,"0","","","H",-5.5]] def Energie(i4,i3,i2,i1,i0,i_1,C): g[2][4]=i4; g[2][3]=i3; g[2][2]=i2; g[1][1]=i1; g[1][0]=i0; g[1][-1]=i_1 E[0]=0; E[1]=0; E[2]=0; E[3]=0; E[4]=0; E[5]=0; E[6]=0; E[7]=0 E_C_pos = -pi + 2*pi**(-1) - pi**(-3) + 2*pi**(-5) - pi**(-7) + pi**(-9) - pi**(-12) - 2*pi**(-14) E_C_neg = 2*pi - pi**(-1) + E_C_pos E[0] = C*( (C>0) * E_C_pos - (C<0) * E_C_neg) #Energy for the charge for l in range(4, 1, -1): #Gluonen r b g E[2] += g[2][l]*(2*pi)**l for n in range(1, -2, -1): #e, u, d E[1] -= g[1][n]*(2*pi)**n for l in range(4, 1, -1): for n in range(1, -2, -1): if g[2][l] != 0 and g[1][n] != 0: E[3] += (l+n<4)*(g[2][l]>0)* g[2][l] * g[1][n] * 2 * (2*pi)**(-l-n-1)#neutral, matter E[4] += (l+n<4)*(g[2][l]<0)* g[2][l] * g[1][n] * 2 * (2*pi)**(-l-n) #neutral, antimatter E[5] -= (l+n>3) * g[2][l] * g[1][n] * 2 * (2*pi)**(-l-n-1) #neutral, Gravitation E[6] += abs(g[2][l] * g[1][n]) * 2 * (2*pi)**(-8) #internal time g[2][l] = 0; g[1][n] = 0; break if g[2][l] == 0 and g[1][n] == 0: E[7] -= (2*pi)**(-l-n-1) #neutral, antimatter E[7] -= (2*pi)**(-l-n) #neutral, antimatter # -1/(2pi) > Neutrino \nu_{\mu} = 1/pi > decay # Antineutrino \nu_e = (2pi)**(-2(l+n)-1)/pi break E[0] += E[1] + E[2] + E[3] + E[4] + E[5] + E[6] + E[7] return E[0] for i5 in [0]: # for speed v for i4 in [-1,-1/2,0,1/2,1]: #[-2,-1,-1/2,0,1/2,1,2]: Select range for more particle for tau [0]: # for i3 in [-1,-1/2,0,1/2,1]: #[-2,-1,-1/2,0,1/2,1,2]: # for Phi for i2 in [-2,-3/2,-1,-1/2,0,1/2,1,3/2,2]: for i1 in [-3,-2,-3/2,-1,-1/2,0,1/2,1,3/2,2,3]: #[-2,-3/2,-1,-1/2,0,1/2,1,3/2,2]: print("i4",i4,"i3",i3,"i2",i2,"i1",i1,"i_T1", i_T1) for i0 in [-3,-2,-3/2,-1,-1/2,0,1/2,1,3/2,2,3]: for i_1 in [-3,-2,-3/2,-1,-1/2,0,1/2,1,3/2,2,3]: for C in [-1,-1/2,0,1/2,1]: Energie(i4,i3,i2,i1,i0,i_1,C) if E[0] > 2000: continue # for plot E < 2000 # Select any energy range. for H, Proton und Neutron: E[0] < 1836 or E[0] > 1839 # if E[0] > 300: continue for u, d, s, pion, muon if i4+i3+i2<0: continue # only E > 0 i_T += 1 for j in [1,2,3,4,5,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26]: min_ = float(Obj[j][3]); max_ = float(Obj[j][4]) if E[0]>0 and (E[0]-float(Obj[j][2])<=1.2*max_) and \ (E[0]-float(Obj[j][2])>=1.2*min_): i_T1 += 1 N_E[i_T1]= E[0] N_T[i_T1]= i_T Mark[i_T1]= j if Emax[j] < E[0]: Emax[j]= E[0]; i_Emax[j] = i_T; Dmax[j] = [i4,i3,i2,i1,i0,i_1,C] if Emin[j] > E[0] or Emin[j] == 0: Emin[j]= E[0]; i_Emin[j] = i_T; Dmin[j] = [i4,i3,i2,i1,i0,i_1,C] if E[0] > 0: plt.plot([i_T,i_T+1], [E[0], E[0]], color="#C0BCBC") print(".............. wait for Plot, several minutes .................") print("") print("possible ET: ", i_T , "real ET: ", i_T1) F=["#FFFFFF","#000000","#F60000","#05FB4F","#000000","#CFCF00","#FFFFFF","#FFFFFF","#FFFFFF","#FFFFFF", "#F700D2","#047619", "#00F73E","#7BB91F","#A9BF06","#789E20","#047619", "#E8EF88","#CF00B7","#EC61A9","#EF88BE","#88FF51","#FA9805", "#4200F6","#850827","#000000","#495999"] for j in [1,2,3,4,5,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26]: m_min = float(Obj[j][2]) + float(Obj[j][3]); m_max = float(Obj[j][2]) + float(Obj[j][4]) p = Obj[j][2].find('.') + len(str(int(m_min))) + 1 E_mitte = (Emax[j]+Emin[j])/2; i_deltaE=abs(i_Emax[j]-i_Emin[j]+1); i_E = (i_Emax[j]+i_Emin[j])/2 print("") print('{0:10}{1:16}{2:16}{3:8}{4:6}{5:5}{6:5}{7:5}{8:5}{9:5}{10:5}{3:16}'.format(Obj[j][0]," meassure: m",\ " theory: E"," total "," i4","i3","i2","i1","i0","i-1","C",Obj[j][8])) print('{0:10}{1:16}{2:16}{3:8}{4:6}{5:5}{6:5}{7:5}{8:5}{9:5}{10:5}'.format(" max",round(m_max,p),\ round(Emax[j],p),i_Emax[j],Dmax[j][0],Dmax[j][1],Dmax[j][2],Dmax[j][3],Dmax[j][4],Dmax[j][5],Dmax[j][6])) print('{0:10}{1:16}{2:16}{3:8}'.format(" mean",float(Obj[j][2]),round(E_mitte,8), i_deltaE)) print('{0:10}{1:16}{2:16}{3:8}{4:6}{5:5}{6:5}{7:5}{8:5}{9:5}{10:5}'.format(" min",round(m_min,p),\ round(Emin[j],p),i_Emin[j],Dmin[j][0],Dmin[j][1],Dmin[j][2],Dmin[j][3],Dmin[j][4],Dmin[j][5],Dmin[j][6])) plt.text(i_E + 10000 * float(Obj[j][9]), E_mitte-20, Obj[j][8], color=F[j], fontsize=12) for k in range(i_T1,0,-1): plt.plot(N_T[k], N_E[k], color=F[Mark[k]], marker='.', markerfacecolor=F[Mark[k]]) #plt.plot([1,i_T],[1836.1526734+1,1836.1526734+1],'k',linewidth=1);plt.text(1,1837,'m_Proton+1',\ # fontsize=12,color='blue') # for 0 > E 2000 x_a= i_Emin[1] - 1000 ; x_e= i_T /2; plt.ylabel('Energy in $m_e$'); plt.xlim(i_Emin[1]-2000, i_T+30000); i2 = float(2*pi)**2; i3 = float(2*pi)**3; i4 = float(2*pi)**4; i5 = 1/2*(i4+i3+i2); i6 = i4+i3+i2; plt.plot([x_a,400000],[i4,i4],'k',linewidth=1);plt.text(x_a,i4+15,'$(2\pi)^4$', fontsize=12, color='blue') plt.plot([x_a,400000],[i3,i3],'k',linewidth=1);plt.text(x_a,i3+15,'$(2\pi)^3$', fontsize=12, color='blue') plt.plot([x_a,400000],[i2,i2],'k',linewidth=1);plt.text(x_a,i2+15,'$(2\pi)^2$', fontsize=12, color='blue') plt.plot([x_a,400000],[i5,i5],'k',linewidth=1);plt.text(x_a,i5+15,'$1/2((2\pi)^4+(2\pi)^3+(2\pi)^2)$',\ fontsize=12,color='blue') plt.plot([x_a,400000],[i6,i6],'k',linewidth=1);plt.text(x_a,i6+15,'$(2\pi)^4+(2\pi)^3+(2\pi)^2$',\ fontsize=12,color='blue') x_a = i_T *3/4; dx = i_T/11; i = -50 for j in [1,2,3,4,5,10,11,18,21,23,24,26]: particle = str(Obj[j][8]) if j == 1 or j == 4 or j == 28: particle="" # Obj[j][0].find(particle) == 0: plt.text(x_a, i, Obj[j][0]); plt.text(x_a+dx,i,particle); plt.text(x_a+2*dx, i, abs(i_Emax[j]-i_Emin[j]+1)) i+= 80 plt.savefig('8.1.26.svg', format='svg', dpi=200) plt.show()